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ON THERMOELASTIC DIELECTRICS
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Abstract-Constitutive equations for a linear tbermoelastic dielectric are derived from the energy balance
equation assuming dependence of the stored energy function on the strain tensor. the polarization vector,
the polarization gradient tensor and entropy. A method is indicated for constructing a hierarchy of
constitutive equations for materials with arbitrary symmetry by introducing various thermodynamic
potentials. Maxwell's relations are constructed for the thermodynamic potential WL

, The entropy inequality is
used to obtain stability conditions for an elastic dielectric in equilibrium under prescribed boundary
constraints. Frequencies are explicitly determined for a plane wave propagating along the xl·axis in an infinite
centro-symmetric isotropic thermoelastic dielectric.

\. INTRODUCTION
Mindlin[1] and Suhubi[2] recently extended Toupin's[3] work on elastic dielectrics and the
equations of classical theory of piezo-electricity by assuming the stored energy function to
depend on the strain tensor, the polarization vector as well as the polarization gradient tensor.
This theory explains observed phenomena, otherwise not included in Eringen's[4] or Toupin's
work[3] such as: (1) an electromechanical interaction in symmetric and non-symmetric materi­
als; (2) capacitance of thin dielectric films. By including a magnetic field, Mindlin and Toupin[51
have investigated acoustical and optical activity in alpha quartz.

Pyroelectric crystals develop spontaneous polarization and successive changes in point
group symmetry occur with change in temperature [8]. Thus, for example, barium-titanate
(BaTi03) with transition temperatures of 393, 278, l80"K transforms from class m3m to
pyroelectric classes 4mm, mm2 and 3m, respectively, as the temperature is lowered, For
potassium dihydrogen phosphate (KH2PO.) phase transition occurs at 123°K. Above this Curie
point, the crystal is in paraelectric phase with tetragonal symmetry, 42m, and below in a
ferroelectric phase with orthorhombic symmetry mm2,

This paper deals with thermoelastic dielectrics where the contribution due to polarization
gradient is taken into account. Constitutive equations for the stress tensor, electric vector,
electric tensor and the temperature are derived from the energy balance equation by assuming
the strain energy function to depend on the strain tensor, the polarization vector, the polariza­
tion gradient tensor, and entropy. Relations between the isothermal and adiabatic constants are
derived. The' arbitrary choice of independent and dependent variables and various types of
boundary constraints suggests introduction of a number of thermodynamic potentials for each
of which differentials and constitutive equations are derived, Maxwell's relations are obtained.
As an example, constitutive equations for materials with 42m point group symmetry are
constructed.

The entropy inequality is employed to determine stability conditions for an elastic dielectric
with given boundary constraints. Finally, the frequencies are explicitly determined for a plane
wave propagating along the XI-axis in an infinite isotropic centro-symmetric thermoelastic
dielectric.

2, BASIC EQUATIONS
Let a homogeneous linear elastic dielectric continuum with the contribution of the polariza­

tion gradient taken into account, oecupy a region V in a rectangular Cartesian coordinate
system.

The basic equations developed in [4] reduce to equations of motion

(2.la)

(2.lb)

1173



1174
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4>.;i =0 in V*

Is· = - (u" + u.. )./ 2 1./ /.'

(2.lc)

(2.2)

(2.3)

(2.4)

(2.5)

in which Tji, Ejj and Sij denote components of the stress-tensor, electric tensor, and the strain
tensor, respectively; Uj, Pi, LEj, EiYS

, Ii and nj designate components of displacement vector,
polarization vector, local electric vector, the Maxwell self field vector, the external body force
vector and the unit normal vector, respectively; 4>,114>./11, Pc represent potential of Maxwell field,
jump in 4>./ across S and the charge density; ki(x), S/(x) and l1(X) are surface loadings; v* is
the outer vacuum and Eo its permittivity.

The entropy density, fT, is defined by[6]

qu = -fJu

and from Fourier's law of heat conduction one writes

(2.6)

(2.7)

where qj is the heat conduction vector, (J is the absolute temperature, and k/j are the heat
conduction coefficients, symmetric in i and j.

l ENERGY BALANCE AND CONSTITVTlVE EQUATIONS
The principle of conservation of energy for an elastic dielectric occupying a region V and

bounded by a surface S can be stated as follows:
The rate of increase in total energy is equal to the rate at which work is done by the

tractions across S, the external body and electric forces within V, less the outward flux of
electrical and thermal energy across S. Thus the energy balance can be written as

where

and
L EO

U = W (S/j, Pi, Pji.u ) + 4>.jPj - "2 4>./4>.; (3.2)

are the kinetic (K) energy and (WI.) the strain energy density functions of deformation and

polarization.
Applying the divergence theorem to the surface integral in (3.1) and making use of eqns

(2.1), one obtains
(3.3)

where
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Since (3.3) holds for any arbitrary volume V, we have
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(3.4)

where we have used (2.6). This is the first law of thermodynamics for a homogeneous elastic
dielectric.

We shall treat (1ii' Sii)' (-LEi> Pi), (Eii> IIij) and (8, 0') as a set of conjugate thermodynamic
variables. Assuming Sii' Ph IIiit 0' as an independent set. one can write

(3.5)

and from a comparison of eqns (3.4) and (3.5) the system of constitutive equations are written
as

(3.6)

The Maxwell relations can now be derived as

(3.7)

The choice of independent or dependent thermodynamic variables is suggested by the
boundary constraints and is effected by a Legendre transformation. Following Mason [9], we list
in Appendix A, 12 thermodynamic potentials for mechanical. electrical and thermal variables,
each with definition, independent variables, differential relations and state equations.

Each thermodynamic potential contains a complete description of thermodynamic proper­
ties of the homogeneous elastic dielectric. For the thermodynamic process governed by the
strain energy function of deformation and polarization WL(Sii' Ph IIiJ, 0'), the stress tensor 1ii'

the local electric vector LEm, the electric tensor Eii and the temperature 8 are functions of Sii'

Pm' II iJ and 0', respectively. Thus

with similar relations for LEnt, EiJ and 8.
Let us consider the differential

dT. = [0 TiJ]pnO' dS.. + [oTiJ]SnO' dP + [OTkl]SPO' dII .. + [OTkIJSPIl d
kl OSii II oPm nt oII ji II 00' (T

(3.8)

(3.9)

where the superscripts indicate the variables held constant. For a linear theory, W L is a
quadratic function of the independent variables and the coefficients are constants; thus eqns
(3.9) may be integrated to give

Similarly, one obtains
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(3.10)

(3.11 )

Making use of (3.11) in (3.10), and recalling that the strain energy function of deformation
and polarization is a quadratic, expressions for WI., t, LE, E and 8 may be constructed as

1aspn 2 d'P"s n tfl"S n PIIS +:SuD II SKp SPll+2'" 0' + mp p m+Jip prj+'Yp pO' limn m+1/k kU+Em mO'

(3.12)

T. = cPu..S + ~"p, +dPon + 'V PliO'
p qp q 1jp / """-m IP

E - fO"S + SO"p +'.san + sn"- I. k - kq q akj j lk.... lm 11k

(3.13)

where the linear term bomll", has been added to W L to account for the surface energy of
deformation and polarization, and various indices here take ranges as follows: p, q == 1-6; m,
n =1-9; i, j, k =1-3.
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Also, we have introduced the abbreviated indicial notation in which a pair of indices ij or kl
is replaced by a single index p, or q; m or n according to

Scheme for T;i or Ski

ij or kl II 22 33 23,3231,13 12,21

porq 2 3 4 5 6

Scheme for ~;i or IIkI

ii or kl 11 22 33 23 31 12 32 13 21

morn 2 3 4 5 6 7 8 9

The constitutive equations may be written in various forms depending on the thermodynamic
potential used. The relations (3.13) are represented by joining the corners of a cube as shown in
Fig. 1.

Interchanging the positions of e and (T, the constitutive equations which may arise due to
potential A (free energy) are given by

To = cPIJ·S + f~·p· + d P9n +~ PIJeP qp q IP I "'1>"'" P

-LEk = fC'Sq + a~fifPi + if:.II". + p/IJ(J

~". = d:Sq +hs.:p; + b~~ft + ~;,Pe + bom

(T = _~/IJSq - p/IJPi - ~~"I1m + "spn(J.
(3.14)

The relations between isothermal and adiabatic constants are found to be

c~n. = C~n. - "SPIJ-yppn-y/IJ,

d:::'= d;:;- "SPIJ-y/n~mSP,

it:, = iff:. - "SPIJ71ksn€mSP,

"SPIJpspn = I,

"spn71psn = PPsn,

f~' = f~u - "SP"-y/".,,/"

a~n.= a~nu_ "SPIJ.,,/n"'ksn

b~;:= b~:u- "SP"E".SP~ftSP

"SPll", pn = ~ pn
lP p (3.15)

I \ ~
I I

I /', / ~ \
"/ / \
'I \

1"..( \
I '" \
I;" \

I ,

I / ,,'
'I , ,\

I I' ,,\, \, \
, \, \,

Fig. I. Geometric representation (or constitutive relations (3.13).
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Constitutive equations can be derived for any of 32 crystal classes by symmetry trans­
formations and group theoretic methods [7). Some of the constants become zero and other
non-zero constants are found to bear mutual relations. As an example, we consider the crystal
class with 42m (International) point group symmetry. Constitutive equations including thermal
effects are constructed in Appendix B.

4. ENTROPY INEQl:ALITY AND STABILITY

The second law of thermodynamics permits only those transformations of the elastic
dielectric system which make the total entropy change either positive or zero.

Let the system suffer infinitesimal transformations in which various field changes are
denoted by 6Sjj, 6Pj , 6fIij, 6</> and &r and let it be subjected to the boundary constraints

njTijliuj = const.

nj(EOtP.i - P;)6q, = const.

Let 6W be the work done by the external fields {;, E;o and Pro Then

(4.\)

(4.2)

Making use of eqns (2.\), the divergence theorem and boundary constraints (4.1), one

establishes

-8W = 8f (-1'c-S· + LEp· - E·fI - </> P] dv + Eo 8f tP·tP dv
I' 1/ /) / / II I) ./ / 2 1"/" •

The corresponding energy change is given by

(4.3)

(4.4)

Let the elastic dielectric be in thermal contact with a heat bath where the heat transferred from
the dielectric to the heat bath = -(8U - 6W) and the entropy change of the heat bath =

-(JW - BW)/6. Therefore

where

the total entropy change BU - BW f=:- +8 udv
(J v

=: -BS

S = f {W L
- TjjSjj + I.EjPj - EijlI jj - 8u] dv

v

and thus the entropy inequality reduces to

8Ss0.

(4.5)

(4.6)

A thermodynamic system of an elastic dielectric described by the state variables Sij. Tij. Pi.

LE, E' (J u is said to be in a state of stable equilibrium under a prescribed set of constraints if
" fJ' ,

an arbitrary set of small transformations aSjj, BPi, Bil j;, &r will carry this state into an adjacent

state in such a manner that
(i) imposed constraints are not violated
(ii) BS is positive definite (i.e. S is minimum).
In general. the constraints suggest the choice of the thermodynamic potential and stability is

determined by the extremal properties of an integral similar to (4.5).
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We proceed now to determine the restriction imposed on the behavior of the integrand of S
in a stable state under the constraints (4.1). It is found that

where X is the 19 dimensional vector

X= [e5Sp , e5Pi, e5llm, &7], p = 1-6; j = 1-3, m = 1-9,

superscript t stands for transpose, and l is a 19 x 19 matrix

L=

at
as

al
as
a8

as

at
aft

al
aft

a8

aft

at
al"l

at
al"l

a8

al"l
a8

au

(4.7)

where we have used eqns (3.6) and (3.7).
Thus the necessary and sufficient conditions for stability of the elastic dielectric are that the

principal minors of the matrix, (4.7), are all positive.

5. PLANE WAVES
For the homogeneous isotropic elastic dielectric the constitutive coefficients take the form

{iik =0, jiik =0, b8 = boe5i1> aii = ae5ii

l1ii = l1e5i1> (ii = (e5iJ

biJkJ = b 12e5i~kJ + b44(e5u.e5J/ + e5ue5jk) + bn(e5u.e5j/ - e5ue5jk )

CijkJ = C12e5/~kJ +C44(8u.e5J/ +e5u8jk)

dijkJ = d12e5i~kl + d44(~J/ + e5u8jk)

where 8iJ is the Kronecker delta. The constitutive equations reduce to

(5.1)

Tij = d l28il'u + d44(pj,i + PlJ) + Cl28iiSU + 2C44Sij + l1e5ij8

-LEk = aPk

Eii = bl28il'u + b44(Pj•i + PiJ) + bn(Pj•i - PlJ) + dl2e5ijSU + 2d44Sij + b08ij + (8ii8

u = -I1Su - (Pu + p() (5.2)

where we have suppressed the superscripts on various constants.
Substituting (5.2) into (2.1), the equations of motion reduce to

C44V2Uj + (c - C44)U~ii + d44V
2Pj + (d - d44)PMj +118J = piij

d44V
2
Uj + (d - d44)U~ij + b*V2PJ+(b - b·)P~iJ - aPJ- t/>J + (8J = 0

-EoV
2t/> + P~i = 0

• -I
-l1u~i - (P~i + p() = 80 KII-8.iJ (5.3)
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x = XI2 + 2X44 (x = b, c. d) and b* = b44 + b77 .

Consider a plane wave in an infinite crystal, with its normal in the XI direction; i.e. assume

Uj = Ai cos ~XI e'w,.

4> = C sin ~XI e'w,.

Pi = Bi cos ~XI eiwl

(J = D sin ~XI eiw
,. (5.4)

Substituting (5.4) into (5.3) and setting the determinant of the coefficient matrix of vector
(AJ, A 2, A 3, BJ, B2• B3, C, D) equal to zero, one obtains the secular equation

c _,\2 0 0 d 0 0 -~

0 C44 - A2 0 0 d44 0 0
0 0 C44 - A2 0 0 d44 0
d 0 0 b+a+Eo' l 0 0 0 =0
0 d44 0 0 b* + a 0 0
0 0 d44 0 0 b* + a 0
~ 0 0 ( 0 0 n

(5.5)

where

(5.6)

The determinant (5.5) is further simplified and the three values of A2 are explicitly
determined and found to be

2 2 d~Al =A 2 =C44---­
a + b*

(5.7)

A/=C+~[~ b (d 1]'+a + Eo
(5.8)
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APPENDIX A
Some useful thermodynamic potentials:
(I) Strain Energy: WL(Sijo Pi' nij•0'):

dWL = T,j dSi, - IE; dPj +Eij dn ij + 6 dO'

awL awl. awL
T" = as-' -,E, ="'"'iP."' Ei, = an.:-'

11 I 11

(2) Free Energy: WI. -Ikr = A(Sijo P" nil' 6)

awl.
6=-.au

dA = Tij dSij - I.E; dPj + Eij dn i; - 0' d6

aA aA aA aA
Tij =as' -LEi =ap' Eij =an' 0' = - a6'

11 I II
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(3) Enthalpy: H(T/;. LEi' Eii' 0') = WL - Ti,Si} + LEI'; - Eljnl;

dH = -S/; dTi; + P; dLE; - nij dEij +9dO'

DB DB aH aH
Sii=--aT' Pj=-aE' nl;=--a• 9=-a.ij L } EI; 0'

(6) Electric Enthalpy: H~(Sii' LEi' nil' 0') = WL + LEI';

dH~ = Tlj dSij + p} dLEI + Ei; dOi}+ 9 dO'

T -~ P-~ ~ -~ ,,-~
ij- aS

I
;' j-aLE;' 'il- anij' u- au'

dH~· = Tij dSi; - LEj dPj - nl; dEq + 9 dO'

aH·· aH·· aH··
T;J=~' LEI=-~' nil=-r,

IJ I 'I

(8) Gibbs function: G(1ii' LE}. Ell' 9) = WL - S;11i; +LEI'I- nlj€i} - 9u

dG = -Sit d1i} + PI dLE} - nl} dEl; - O'd9

aG aG aG aG
SI;=- aT;;' Pj =aLE;' nl}=- aEi;' u=- a9'

(9) Elastic Gibbs function: G,(1i!' Pi' nil' 9) = WL - SI}TI} - 9u

dG, = -Sil dT;} - LE} dP; + EIj dni; - 0' d9

. S - aG, - ~ -!!!J. _ ~
Ij - - aT' LE} - - aP}' EI} - an ..' 0' - - a9'

II 'I

dG~ = T;; dSi; + P; dLEI + Ei} dOl} - U d9

-~ -!Q1 -~ -!Q1
TI} - as.· , p} - aLE' EI} - an}' 0' - - a9'

" I I

(12) Electric Gibbs function: G~·(SI;' Pi' Eli' 9) = WL - ~;;fli; - 9u

dG~· = TI} dSlj - LEj dPj - nlj dEli - 0' d9

_~ _ _ aG!" iJG!" iJG!·
Ti; - as

il
' LEJ - aI';' nlj = - iJElj' 0' = - a(J .

APPENDIX B
Constitutive relations (3.13) for crystal class 42m(Du ).
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